

Landsat Ecosystem Disturbance Adaptive Processing System

LEDAPS: Assessing Forest Disturbance from Landsat Imagery

Jeff Masek, Robert Wolfe, Forrest Hall, NASA GSFC Chengquan Huang, Samuel Goward, UMD Sean Healey, Scott Powell, Warren Cohen USFS

January, 2007

Background

Global estimates of carbon fluxes often exclude effects of land cover change and disturbance

Patch size often small – requires Landsat-type data analysis

NACP Science Plan calls for analysis of disturbance from satellite data

Two Related Projects

LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System): Wall-to-wall disturbance patterns, 1990-2000, mapped from ~2200 TM/ETM+ scene pairs.

=> spatial patterns; gross rates

UMD NACP Project: Sampling approach (25 U.S. locations) with dense time series of imagery => precise rates, temporal variability

LEDAPS Goals

- Generate decadal surface reflectance (SR) product for North America from Landsat GeoCover archive (1975-2000)
 - apply lessons from MODIS processing
- Generate decadal, wall-to-wall maps of forest disturbance, recovery, and conversion for North America in support of NACP
 - •high-resolution (30m) scene-based products
 - •coarse-resolution (0.05 deg) modeling products
- Develop automated approaches to Landsat processing that can be adapted for other community applications
 - we do this for AVHRR, MODIS, VIIRS... why not Landsat?
- •Work with representatives of USDA Forest Service to evaluate applications utility of SR and disturbance products for carbon management and forest monitoring.

LEDAPS Processing Overview

Atmospheric Correction

Based on MODIS/6S radiative transfer approach

water vapor from NCEP re-analysis data ozone from TOMS, EP-TOMS topographic-dependent Rayleigh correction

Aerosol optical thickness estimated from imagery using the Kaufmann et al (1997) "Dense, dark vegetation" approach

- estimate blue reflectance based on TOA SWIR 2
- difference between TOA_{blue} and SR_{blue} gives AOT
- interpolate valid targets across image

Atmospheric Correction

Effect of Atmospheric Correction

(MOD9A surface reflectance) – (ETM+ reflectance), 8/3/00

Reflectance Validation

Units: Reflectance (x 10000)

Initial Goal: stand-clearing disturbances (harvest, fire) and secular changes in forest cover

Two approaches to mapping disturbance:

- 1. "Disturbance Index": semi-empirical spectral index developed by Sean Healey and Warren Cohen, USDA Forest Service.
- 2. Matching **spectral trajectories** from canopy reflectance models to retrieve physical canopy parameters (D. Peddle/F. Hall/F. Huemmrich)

Disturbance Index: Brightness_{rescaled} – (Greenness_{rescaled} + Wetness_{rescaled})

Brightness_{rescaled} =
$$(B - \mu_{forest})/\sigma_{forest}$$

Disturbance Index Example

Olympic Peninsula

5km

S. Olympic Peninsula 2.6% disturbed / yr Turnover = 38 Yr W. Montana 1.5% disturbed / yr Turnover = 69 Yr

> W. Pennsylvania 0.2% disturbed / yr Turnover = 550 Yr

NW Colorado 0.7% disturbed / yr Turnover = 145 Yr S. Virginia 2.2% disturbed / yr Turnover = 44 Yr

N. Louisiana 3.4% disturbed / yr Turnover = 29 Yr

Forest Disturbance

FIA Comparisons

The attribute of interest is Area of forestland(hectares).

Filters: with a stand age from 0 to 20 years,

Area of forestland(hectares) divided by the total area of land in each County code(hectares). .

Fraction of county area occupied by forests < 20 Years Old

Lessons Learned

Ten year refresh intervals are too long

3-5 years for mapping clear cuts

1-2 years for mapping thinning

<1 year for defoliation (insects, storm damage)

Time Series Approaches for Satellite Analysis

Process and Re-process Data

What is "regrowth" anyway?

Conclusions and Next Steps

Disturbance rates vary widely

- up to 3-4% per year in Southeast, PNW, Maine
- lower rates in Rockies, Northeast

Year-to-year variability small in absolute terms (~1%) but can be large in relative terms (~25%).

Next steps:

- continued formal validation of disturbance products
- merging of "wall-to-wall" and sampling results
- characterization of biomass accumulation due to recovery and its spatial variability

Thank You